TABLE ERRATA

299.-Mme. Jacqueline Heurtaux, "Tables de polynômes d'interpolation avec seulement deux abscisses distinctes," Chiffres, $1^{\text {re }}$ Année, Paris, March 1958, p. 25-34.

$$
\begin{array}{ccccc}
& & & \text { for } & \text { read } \\
\text { p. 31, } & Q_{0}{ }^{3}, & x=0.15 & 0.9733882250 & 0.9733881250
\end{array}
$$

H. E. Salzer

Convair-Astronautics
San Diego 12, California
300.-H. Takeyama, "Expressions for interpolation and numerical integration of high accuracy," Tohoku Univ. Technol. Reports, v. XXIII, 1958, p. 47-ī0.
On p. 69, corresponding to $u=0.04$, the value of U_{0}^{\prime} should read $0.039 \ldots$ instead of $9.039 \ldots$; and corresponding to $u=0.34$, the value of U_{2} should read 0.72203533386336 instead of 0.72203583386336 .

H. E. Salzer

CORRIGENDA

C. W. Dunnett \& R. A. Lamm, "Some tables of the multivariate normal probability integral with correlation coefficients $\frac{1}{3}$," Math. Comp., Review 50, v. 14, 1960, p. 290.

In the expression given for the probability integral of the multivariate normal distribution in n dimensions the upper limit of the innermost integral should read x_{n} instead of x_{m}, and the denominator $(1-\rho) \frac{(n-1)}{2}$ should be replaced by $(1-\rho)^{\frac{(n-1)}{2}}$
In the following line of the text

$$
\text { for } F_{n, \rho} \rho\left(x_{1}, \cdots, k_{n}\right), \quad \text { read } F_{n, \rho}\left(x_{1}, \cdots, x_{n}\right)
$$

F. R. Gantmacher, Applications of the Theory of Matrices, Math. Comp. Review 43, v. 14, 1960, p. 284-285.

This book is a translation and revision of the second velume of Cantmacher's Theory of Matrices that was carried out by three people; namely, J. L. Brenner (named as the sole translator in the review under discussion), Mr. S. Evanusa and Prof. D. W. Bushaw.

Murlan S. Corrington, "Applications of the complex exponential integral,"
Math. Comp., v. 15, 1961, p. 1-6.
On p. 2, eq. (11c) should read $S i(-x-i y)=-S i(x+i y)$ in place of $S i(-x-i y)=S i(x+i y)$.

